Pandas Cookbook
Reference : https://pandas.pydata.org
This is a repository for short and sweet examples and links for useful pandas recipes. We encourage users to add to this documentation.
Adding interesting links and/or inline examples to this section is a great First Pull Request.
Simplified, condensed, new-user friendly, in-line examples have been inserted where possible to augment the Stack-Overflow and GitHub links. Many of the links contain expanded information, above what the in-line examples offer.
Pandas (pd) and Numpy (np) are the only two abbreviated imported modules. The rest are kept explicitly imported for newer users.
These examples are written for Python 3. Minor tweaks might be necessary for earlier python versions.
Idioms
These are some neat pandas idioms
if-then/if-then-else on one column, and assignment to another one or more columns:
In [1]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
...: 'BBB': [10, 20, 30, 40],
...: 'CCC': [100, 50, -30, -50]})
...:
In [2]: df
Out[2]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
if-then…
An if-then on one column Customarily, we import as follows:
In [3]: df.loc[df.AAA >= 5, 'BBB'] = -1
In [4]: df
Out[4]:
AAA BBB CCC
0 4 10 100
1 5 -1 50
2 6 -1 -30
3 7 -1 -50
An if-then with assignment to 2 columns:
In [5]: df.loc[df.AAA >= 5, ['BBB', 'CCC']] = 555
In [6]: df
Out[6]:
AAA BBB CCC
0 4 10 100
1 5 555 555
2 6 555 555
3 7 555 555
Add another line with different logic, to do the -else
In [7]: df.loc[df.AAA < 5, ['BBB', 'CCC']] = 2000
In [8]: df
Out[8]:
AAA BBB CCC
0 4 2000 2000
1 5 555 555
2 6 555 555
3 7 555 555
Or use pandas where after you’ve set up a mask
In [9]: df_mask = pd.DataFrame({'AAA': [True] * 4,
...: 'BBB': [False] * 4,
...: 'CCC': [True, False] * 2})
...:
In [10]: df.where(df_mask, -1000)
Out[10]:
AAA BBB CCC
0 4 -1000 2000
1 5 -1000 -1000
2 6 -1000 555
3 7 -1000 -1000
if-then-else using numpy’s where()
In [11]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:
In [12]: df
Out[12]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [13]: df['logic'] = np.where(df['AAA'] > 5, 'high', 'low')
In [14]: df
Out[14]:
AAA BBB CCC logic
0 4 10 100 low
1 5 20 50 low
2 6 30 -30 high
3 7 40 -50 high
Splitting
Split a frame with a boolean criterion
In [15]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:
In [16]: df
Out[16]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [17]: df[df.AAA <= 5]
Out[17]:
AAA BBB CCC
0 4 10 100
1 5 20 50
In [18]: df[df.AAA > 5]
Out[18]:
AAA BBB CCC
2 6 30 -30
3 7 40 -50
Building criteria
Select with multi-column criteria
In [19]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:
In [20]: df
Out[20]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
…and (without assignment returns a Series)
In [21]: df.loc[(df['BBB'] < 25) & (df['CCC'] >= -40), 'AAA']
Out[21]:
0 4
1 5
Name: AAA, dtype: int64
…or (without assignment returns a Series)
In [22]: df.loc[(df['BBB'] > 25) | (df['CCC'] >= -40), 'AAA']
Out[22]:
0 4
1 5
2 6
3 7
Name: AAA, dtype: int64
…or (with assignment modifies the DataFrame.)
In [23]: df.loc[(df['BBB'] > 25) | (df['CCC'] >= 75), 'AAA'] = 0.1
In [24]: df
Out[24]:
AAA BBB CCC
0 0.1 10 100
1 5.0 20 50
2 0.1 30 -30
3 0.1 40 -50
Select rows with data closest to certain value using argsort
In [25]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:
In [26]: df
Out[26]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [27]: aValue = 43.0
In [28]: df.loc[(df.CCC - aValue).abs().argsort()]
Out[28]:
AAA BBB CCC
1 5 20 50
0 4 10 100
2 6 30 -30
3 7 40 -50
Dynamically reduce a list of criteria using a binary operators
In [29]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:
In [30]: df
Out[30]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [31]: Crit1 = df.AAA <= 5.5
In [32]: Crit2 = df.BBB == 10.0
In [33]: Crit3 = df.CCC > -40.0
One could hard code:
In [34]: AllCrit = Crit1 & Crit2 & Crit3
…Or it can be done with a list of dynamically built criteria
In [35]: import functools
In [36]: CritList = [Crit1, Crit2, Crit3]
In [37]: AllCrit = functools.reduce(lambda x, y: x & y, CritList)
In [38]: df[AllCrit]
Out[38]:
AAA BBB CCC
0 4 10 100
Selection
Dataframes
The indexing docs.
Using both row labels and value conditionals
In [39]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:
In [40]: df
Out[40]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [41]: df[(df.AAA <= 6) & (df.index.isin([0, 2, 4]))]
Out[41]:
AAA BBB CCC
0 4 10 100
2 6 30 -30
Use loc for label-oriented slicing and iloc positional slicing
In [42]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]},
....: index=['foo', 'bar', 'boo', 'kar'])
....:
There are 2 explicit slicing methods, with a third general case
-
Positional-oriented (Python slicing style : exclusive of end)
-
Label-oriented (Non-Python slicing style : inclusive of end)
-
General (Either slicing style : depends on if the slice contains labels or positions)
In [43]: df.loc['bar':'kar'] # Label
Out[43]:
AAA BBB CCC
bar 5 20 50
boo 6 30 -30
kar 7 40 -50
# Generic
In [44]: df[0:3]
Out[44]:
AAA BBB CCC
foo 4 10 100
bar 5 20 50
boo 6 30 -30
In [45]: df['bar':'kar']
Out[45]:
AAA BBB CCC
bar 5 20 50
boo 6 30 -30
kar 7 40 -50
Ambiguity arises when an index consists of integers with a non-zero start or non-unit increment.
In [46]: data = {'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]}
....:
In [47]: df2 = pd.DataFrame(data=data, index=[1, 2, 3, 4]) # Note index starts at 1.
In [48]: df2.iloc[1:3] # Position-oriented
Out[48]:
AAA BBB CCC
2 5 20 50
3 6 30 -30
In [49]: df2.loc[1:3] # Label-oriented
Out[49]:
AAA BBB CCC
1 4 10 100
2 5 20 50
3 6 30 -30
Using inverse operator (~) to take the complement of a mask
In [50]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:
In [51]: df
Out[51]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [52]: df[~((df.AAA <= 6) & (df.index.isin([0, 2, 4])))]
Out[52]:
AAA BBB CCC
1 5 20 50
3 7 40 -50
New columns
Efficiently and dynamically creating new columns using applymap
In [53]: df = pd.DataFrame({'AAA': [1, 2, 1, 3],
....: 'BBB': [1, 1, 2, 2],
....: 'CCC': [2, 1, 3, 1]})
....:
In [54]: df
Out[54]:
AAA BBB CCC
0 1 1 2
1 2 1 1
2 1 2 3
3 3 2 1
In [55]: source_cols = df.columns # Or some subset would work too
In [56]: new_cols = [str(x) + "_cat" for x in source_cols]
In [57]: categories = {1: 'Alpha', 2: 'Beta', 3: 'Charlie'}
In [58]: df[new_cols] = df[source_cols].applymap(categories.get)
In [59]: df
Out[59]:
AAA BBB CCC AAA_cat BBB_cat CCC_cat
0 1 1 2 Alpha Alpha Beta
1 2 1 1 Beta Alpha Alpha
2 1 2 3 Alpha Beta Charlie
3 3 2 1 Charlie Beta Alpha
Keep other columns when using min() with groupby
In [60]: df = pd.DataFrame({'AAA': [1, 1, 1, 2, 2, 2, 3, 3],
....: 'BBB': [2, 1, 3, 4, 5, 1, 2, 3]})
....:
In [61]: df
Out[61]:
AAA BBB
0 1 2
1 1 1
2 1 3
3 2 4
4 2 5
5 2 1
6 3 2
7 3 3
Method 1 : idxmin() to get the index of the minimums
In [62]: df.loc[df.groupby("AAA")["BBB"].idxmin()]
Out[62]:
AAA BBB
1 1 1
5 2 1
6 3 2
Method 2 : sort then take first of each
In [63]: df.sort_values(by="BBB").groupby("AAA", as_index=False).first()
Out[63]:
AAA BBB
0 1 1
1 2 1
2 3 2
Notice the same results, with the exception of the index.
Multiindexing
The multindexing docs.
Creating a MultiIndex from a labeled frame
In [64]: df = pd.DataFrame({'row': [0, 1, 2],
....: 'One_X': [1.1, 1.1, 1.1],
....: 'One_Y': [1.2, 1.2, 1.2],
....: 'Two_X': [1.11, 1.11, 1.11],
....: 'Two_Y': [1.22, 1.22, 1.22]})
....:
In [65]: df
Out[65]:
row One_X One_Y Two_X Two_Y
0 0 1.1 1.2 1.11 1.22
1 1 1.1 1.2 1.11 1.22
2 2 1.1 1.2 1.11 1.22
# As Labelled Index
In [66]: df = df.set_index('row')
In [67]: df
Out[67]:
One_X One_Y Two_X Two_Y
row
0 1.1 1.2 1.11 1.22
1 1.1 1.2 1.11 1.22
2 1.1 1.2 1.11 1.22
# With Hierarchical Columns
In [68]: df.columns = pd.MultiIndex.from_tuples([tuple(c.split('_'))
....: for c in df.columns])
....:
In [69]: df
Out[69]:
One Two
X Y X Y
row
0 1.1 1.2 1.11 1.22
1 1.1 1.2 1.11 1.22
2 1.1 1.2 1.11 1.22
# Now stack & Reset
In [70]: df = df.stack(0).reset_index(1)
In [71]: df
Out[71]:
level_1 X Y
row
0 One 1.10 1.20
0 Two 1.11 1.22
1 One 1.10 1.20
1 Two 1.11 1.22
2 One 1.10 1.20
2 Two 1.11 1.22
# And fix the labels (Notice the label 'level_1' got added automatically)
In [72]: df.columns = ['Sample', 'All_X', 'All_Y']
In [73]: df
Out[73]:
Sample All_X All_Y
row
0 One 1.10 1.20
0 Two 1.11 1.22
1 One 1.10 1.20
1 Two 1.11 1.22
2 One 1.10 1.20
2 Two 1.11 1.22
Arithmetic
Performing arithmetic with a MultiIndex that needs broadcasting
In [74]: cols = pd.MultiIndex.from_tuples([(x, y) for x in ['A', 'B', 'C']
....: for y in ['O', 'I']])
....:
In [75]: df = pd.DataFrame(np.random.randn(2, 6), index=['n', 'm'], columns=cols)
In [76]: df
Out[76]:
A B C
O I O I O I
n 0.469112 -0.282863 -1.509059 -1.135632 1.212112 -0.173215
m 0.119209 -1.044236 -0.861849 -2.104569 -0.494929 1.071804
In [77]: df = df.div(df['C'], level=1)
In [78]: df
Out[78]:
A B C
O I O I O I
n 0.387021 1.633022 -1.244983 6.556214 1.0 1.0
m -0.240860 -0.974279 1.741358 -1.963577 1.0 1.0
Slicing
In [79]: coords = [('AA', 'one'), ('AA', 'six'), ('BB', 'one'), ('BB', 'two'),
....: ('BB', 'six')]
....:
In [80]: index = pd.MultiIndex.from_tuples(coords)
In [81]: df = pd.DataFrame([11, 22, 33, 44, 55], index, ['MyData'])
In [82]: df
Out[82]:
MyData
AA one 11
six 22
BB one 33
two 44
six 55
To take the cross section of the 1st level and 1st axis the index:
# Note : level and axis are optional, and default to zero
In [83]: df.xs('BB', level=0, axis=0)
Out[83]:
MyData
one 33
two 44
six 55
…and now the 2nd level of the 1st axis.
In [84]: df.xs('six', level=1, axis=0)
Out[84]:
MyData
AA 22
BB 55
Slicing a MultiIndex with xs, method #2
In [85]: import itertools
In [86]: index = list(itertools.product(['Ada', 'Quinn', 'Violet'],
....: ['Comp', 'Math', 'Sci']))
....:
In [87]: headr = list(itertools.product(['Exams', 'Labs'], ['I', 'II']))
In [88]: indx = pd.MultiIndex.from_tuples(index, names=['Student', 'Course'])
In [89]: cols = pd.MultiIndex.from_tuples(headr) # Notice these are un-named
In [90]: data = [[70 + x + y + (x * y) % 3 for x in range(4)] for y in range(9)]
In [91]: df = pd.DataFrame(data, indx, cols)
In [92]: df
Out[92]:
Exams Labs
I II I II
Student Course
Ada Comp 70 71 72 73
Math 71 73 75 74
Sci 72 75 75 75
Quinn Comp 73 74 75 76
Math 74 76 78 77
Sci 75 78 78 78
Violet Comp 76 77 78 79
Math 77 79 81 80
Sci 78 81 81 81
In [93]: All = slice(None)
In [94]: df.loc['Violet']
Out[94]:
Exams Labs
I II I II
Course
Comp 76 77 78 79
Math 77 79 81 80
Sci 78 81 81 81
In [95]: df.loc[(All, 'Math'), All]
Out[95]:
Exams Labs
I II I II
Student Course
Ada Math 71 73 75 74
Quinn Math 74 76 78 77
Violet Math 77 79 81 80
In [96]: df.loc[(slice('Ada', 'Quinn'), 'Math'), All]
Out[96]:
Exams Labs
I II I II
Student Course
Ada Math 71 73 75 74
Quinn Math 74 76 78 77
In [97]: df.loc[(All, 'Math'), ('Exams')]
Out[97]:
I II
Student Course
Ada Math 71 73
Quinn Math 74 76
Violet Math 77 79
In [98]: df.loc[(All, 'Math'), (All, 'II')]
Out[98]:
Exams Labs
II II
Student Course
Ada Math 73 74
Quinn Math 76 77
Violet Math 79 80
Setting portions of a MultiIndex with xs
Sorting
Sort by specific column or an ordered list of columns, with a MultiIndex
In [99]: df.sort_values(by=('Labs', 'II'), ascending=False)
Out[99]:
Exams Labs
I II I II
Student Course
Violet Sci 78 81 81 81
Math 77 79 81 80
Comp 76 77 78 79
Quinn Sci 75 78 78 78
Math 74 76 78 77
Comp 73 74 75 76
Ada Sci 72 75 75 75
Math 71 73 75 74
Comp 70 71 72 73
Partial selection, the need for sortedness;
Levels
Prepending a level to a multiindex
Missing data
The missing data docs.
Fill forward a reversed timeseries
In [100]: df = pd.DataFrame(np.random.randn(6, 1),
.....: index=pd.date_range('2013-08-01', periods=6, freq='B'),
.....: columns=list('A'))
.....:
In [101]: df.loc[df.index[3], 'A'] = np.nan
In [102]: df
Out[102]:
A
2013-08-01 0.721555
2013-08-02 -0.706771
2013-08-05 -1.039575
2013-08-06 NaN
2013-08-07 -0.424972
2013-08-08 0.567020
In [103]: df.reindex(df.index[::-1]).ffill()
Out[103]:
A
2013-08-08 0.567020
2013-08-07 -0.424972
2013-08-06 -0.424972
2013-08-05 -1.039575
2013-08-02 -0.706771
2013-08-01 0.721555
Replace
Grouping
The grouping docs.
Unlike agg, apply’s callable is passed a sub-DataFrame which gives you access to all the columns
In [104]: df = pd.DataFrame({'animal': 'cat dog cat fish dog cat cat'.split(),
.....: 'size': list('SSMMMLL'),
.....: 'weight': [8, 10, 11, 1, 20, 12, 12],
.....: 'adult': [False] * 5 + [True] * 2})
.....:
In [105]: df
Out[105]:
animal size weight adult
0 cat S 8 False
1 dog S 10 False
2 cat M 11 False
3 fish M 1 False
4 dog M 20 False
5 cat L 12 True
6 cat L 12 True
# List the size of the animals with the highest weight.
In [106]: df.groupby('animal').apply(lambda subf: subf['size'][subf['weight'].idxmax()])
Out[106]:
animal
cat L
dog M
fish M
dtype: object
In [107]: gb = df.groupby(['animal'])
In [108]: gb.get_group('cat')
Out[108]:
animal size weight adult
0 cat S 8 False
2 cat M 11 False
5 cat L 12 True
6 cat L 12 True
Apply to different items in a group
In [109]: def GrowUp(x):
.....: avg_weight = sum(x[x['size'] == 'S'].weight * 1.5)
.....: avg_weight += sum(x[x['size'] == 'M'].weight * 1.25)
.....: avg_weight += sum(x[x['size'] == 'L'].weight)
.....: avg_weight /= len(x)
.....: return pd.Series(['L', avg_weight, True],
.....: index=['size', 'weight', 'adult'])
.....:
In [110]: expected_df = gb.apply(GrowUp)
In [111]: expected_df
Out[111]:
size weight adult
animal
cat L 12.4375 True
dog L 20.0000 True
fish L 1.2500 True
In [112]: S = pd.Series([i / 100.0 for i in range(1, 11)])
In [113]: def cum_ret(x, y):
.....: return x * (1 + y)
.....:
In [114]: def red(x):
.....: return functools.reduce(cum_ret, x, 1.0)
.....:
In [115]: S.expanding().apply(red, raw=True)
Out[115]:
0 1.010000
1 1.030200
2 1.061106
3 1.103550
4 1.158728
5 1.228251
6 1.314229
7 1.419367
8 1.547110
9 1.701821
dtype: float64
Replacing some values with mean of the rest of a group
In [116]: df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, -1, 1, 2]})
In [117]: gb = df.groupby('A')
In [118]: def replace(g):
.....: mask = g < 0
.....: return g.where(mask, g[~mask].mean())
.....:
In [119]: gb.transform(replace)
Out[119]:
B
0 1.0
1 -1.0
2 1.5
3 1.5
Sort groups by aggregated data
In [120]: df = pd.DataFrame({'code': ['foo', 'bar', 'baz'] * 2,
.....: 'data': [0.16, -0.21, 0.33, 0.45, -0.59, 0.62],
.....: 'flag': [False, True] * 3})
.....:
In [121]: code_groups = df.groupby('code')
In [122]: agg_n_sort_order = code_groups[['data']].transform(sum).sort_values(by='data')
In [123]: sorted_df = df.loc[agg_n_sort_order.index]
In [124]: sorted_df
Out[124]:
code data flag
1 bar -0.21 True
4 bar -0.59 False
0 foo 0.16 False
3 foo 0.45 True
2 baz 0.33 False
5 baz 0.62 True
Create multiple aggregated columns
In [125]: rng = pd.date_range(start="2014-10-07", periods=10, freq='2min')
In [126]: ts = pd.Series(data=list(range(10)), index=rng)
In [127]: def MyCust(x):
.....: if len(x) > 2:
.....: return x[1] * 1.234
.....: return pd.NaT
.....:
In [128]: mhc = {'Mean': np.mean, 'Max': np.max, 'Custom': MyCust}
In [129]: ts.resample("5min").apply(mhc)
Out[129]:
Mean 2014-10-07 00:00:00 1
2014-10-07 00:05:00 3.5
2014-10-07 00:10:00 6
2014-10-07 00:15:00 8.5
Max 2014-10-07 00:00:00 2
2014-10-07 00:05:00 4
2014-10-07 00:10:00 7
2014-10-07 00:15:00 9
Custom 2014-10-07 00:00:00 1.234
2014-10-07 00:05:00 NaT
2014-10-07 00:10:00 7.404
2014-10-07 00:15:00 NaT
dtype: object
In [130]: ts
Out[130]:
2014-10-07 00:00:00 0
2014-10-07 00:02:00 1
2014-10-07 00:04:00 2
2014-10-07 00:06:00 3
2014-10-07 00:08:00 4
2014-10-07 00:10:00 5
2014-10-07 00:12:00 6
2014-10-07 00:14:00 7
2014-10-07 00:16:00 8
2014-10-07 00:18:00 9
Freq: 2T, dtype: int64
Create a value counts column and reassign back to the DataFrame
In [131]: df = pd.DataFrame({'Color': 'Red Red Red Blue'.split(),
.....: 'Value': [100, 150, 50, 50]})
.....:
In [132]: df
Out[132]:
Color Value
0 Red 100
1 Red 150
2 Red 50
3 Blue 50
In [133]: df['Counts'] = df.groupby(['Color']).transform(len)
In [134]: df
Out[134]:
Color Value Counts
0 Red 100 3
1 Red 150 3
2 Red 50 3
3 Blue 50 1
Shift groups of the values in a column based on the index
In [135]: df = pd.DataFrame({'line_race': [10, 10, 8, 10, 10, 8],
.....: 'beyer': [99, 102, 103, 103, 88, 100]},
.....: index=['Last Gunfighter', 'Last Gunfighter',
.....: 'Last Gunfighter', 'Paynter', 'Paynter',
.....: 'Paynter'])
.....:
In [136]: df
Out[136]:
line_race beyer
Last Gunfighter 10 99
Last Gunfighter 10 102
Last Gunfighter 8 103
Paynter 10 103
Paynter 10 88
Paynter 8 100
In [137]: df['beyer_shifted'] = df.groupby(level=0)['beyer'].shift(1)
In [138]: df
Out[138]:
line_race beyer beyer_shifted
Last Gunfighter 10 99 NaN
Last Gunfighter 10 102 99.0
Last Gunfighter 8 103 102.0
Paynter 10 103 NaN
Paynter 10 88 103.0
Paynter 8 100 88.0
Select row with maximum value from each group
In [139]: df = pd.DataFrame({'host': ['other', 'other', 'that', 'this', 'this'],
.....: 'service': ['mail', 'web', 'mail', 'mail', 'web'],
.....: 'no': [1, 2, 1, 2, 1]}).set_index(['host', 'service'])
.....:
In [140]: mask = df.groupby(level=0).agg('idxmax')
In [141]: df_count = df.loc[mask['no']].reset_index()
In [142]: df_count
Out[142]:
host service no
0 other web 2
1 that mail 1
2 this mail 2
Grouping like Python’s itertools.groupby
In [143]: df = pd.DataFrame([0, 1, 0, 1, 1, 1, 0, 1, 1], columns=['A'])
In [144]: df['A'].groupby((df['A'] != df['A'].shift()).cumsum()).groups
Out[144]: {1: [0], 2: [1], 3: [2], 4: [3, 4, 5], 5: [6], 6: [7, 8]}
In [145]: df['A'].groupby((df['A'] != df['A'].shift()).cumsum()).cumsum()
Out[145]:
0 0
1 1
2 0
3 1
4 2
5 3
6 0
7 1
8 2
Name: A, dtype: int64
Expanding data
Rolling Computation window based on values instead of counts
Splitting
Create a list of dataframes, split using a delineation based on logic included in rows.
In [146]: df = pd.DataFrame(data={'Case': ['A', 'A', 'A', 'B', 'A', 'A', 'B', 'A',
.....: 'A'],
.....: 'Data': np.random.randn(9)})
.....:
In [147]: dfs = list(zip(*df.groupby((1 * (df['Case'] == 'B')).cumsum()
.....: .rolling(window=3, min_periods=1).median())))[-1]
.....:
In [148]: dfs[0]
Out[148]:
Case Data
0 A 0.276232
1 A -1.087401
2 A -0.673690
3 B 0.113648
In [149]: dfs[1]
Out[149]:
Case Data
4 A -1.478427
5 A 0.524988
6 B 0.404705
In [150]: dfs[2]
Out[150]:
Case Data
7 A 0.577046
8 A -1.715002
Pivot
The Pivot docs.
In [151]: df = pd.DataFrame(data={'Province': ['ON', 'QC', 'BC', 'AL', 'AL', 'MN', 'ON'],
.....: 'City': ['Toronto', 'Montreal', 'Vancouver',
.....: 'Calgary', 'Edmonton', 'Winnipeg',
.....: 'Windsor'],
.....: 'Sales': [13, 6, 16, 8, 4, 3, 1]})
.....:
In [152]: table = pd.pivot_table(df, values=['Sales'], index=['Province'],
.....: columns=['City'], aggfunc=np.sum, margins=True)
.....:
In [153]: table.stack('City')
Out[153]:
Sales
Province City
AL All 12.0
Calgary 8.0
Edmonton 4.0
BC All 16.0
Vancouver 16.0
... ...
All Montreal 6.0
Toronto 13.0
Vancouver 16.0
Windsor 1.0
Winnipeg 3.0
[20 rows x 1 columns]
Frequency table like plyr in R
In [154]: grades = [48, 99, 75, 80, 42, 80, 72, 68, 36, 78]
In [155]: df = pd.DataFrame({'ID': ["x%d" % r for r in range(10)],
.....: 'Gender': ['F', 'M', 'F', 'M', 'F',
.....: 'M', 'F', 'M', 'M', 'M'],
.....: 'ExamYear': ['2007', '2007', '2007', '2008', '2008',
.....: '2008', '2008', '2009', '2009', '2009'],
.....: 'Class': ['algebra', 'stats', 'bio', 'algebra',
.....: 'algebra', 'stats', 'stats', 'algebra',
.....: 'bio', 'bio'],
.....: 'Participated': ['yes', 'yes', 'yes', 'yes', 'no',
.....: 'yes', 'yes', 'yes', 'yes', 'yes'],
.....: 'Passed': ['yes' if x > 50 else 'no' for x in grades],
.....: 'Employed': [True, True, True, False,
.....: False, False, False, True, True, False],
.....: 'Grade': grades})
.....:
In [156]: df.groupby('ExamYear').agg({'Participated': lambda x: x.value_counts()['yes'],
.....: 'Passed': lambda x: sum(x == 'yes'),
.....: 'Employed': lambda x: sum(x),
.....: 'Grade': lambda x: sum(x) / len(x)})
.....:
Out[156]:
Participated Passed Employed Grade
ExamYear
2007 3 2 3 74.000000
2008 3 3 0 68.500000
2009 3 2 2 60.666667
Plot pandas DataFrame with year over year data
To create year and month cross tabulation:
In [157]: df = pd.DataFrame({'value': np.random.randn(36)},
.....: index=pd.date_range('2011-01-01', freq='M', periods=36))
.....:
In [158]: pd.pivot_table(df, index=df.index.month, columns=df.index.year,
.....: values='value', aggfunc='sum')
.....:
Out[158]:
2011 2012 2013
1 -1.039268 -0.968914 2.565646
2 -0.370647 -1.294524 1.431256
3 -1.157892 0.413738 1.340309
4 -1.344312 0.276662 -1.170299
5 0.844885 -0.472035 -0.226169
6 1.075770 -0.013960 0.410835
7 -0.109050 -0.362543 0.813850
8 1.643563 -0.006154 0.132003
9 -1.469388 -0.923061 -0.827317
10 0.357021 0.895717 -0.076467
11 -0.674600 0.805244 -1.187678
12 -1.776904 -1.206412 1.130127
Apply
Rolling apply to organize - Turning embedded lists into a MultiIndex frame
In [159]: df = pd.DataFrame(data={'A': [[2, 4, 8, 16], [100, 200], [10, 20, 30]],
.....: 'B': [['a', 'b', 'c'], ['jj', 'kk'], ['ccc']]},
.....: index=['I', 'II', 'III'])
.....:
In [160]: def SeriesFromSubList(aList):
.....: return pd.Series(aList)
.....:
In [161]: df_orgz = pd.concat({ind: row.apply(SeriesFromSubList)
.....: for ind, row in df.iterrows()})
.....:
In [162]: df_orgz
Out[162]:
0 1 2 3
I A 2 4 8 16.0
B a b c NaN
II A 100 200 NaN NaN
B jj kk NaN NaN
III A 10 20 30 NaN
B ccc NaN NaN NaN
Rolling apply with a DataFrame returning a Series
Rolling Apply to multiple columns where function calculates a Series before a Scalar from the Series is returned
In [163]: df = pd.DataFrame(data=np.random.randn(2000, 2) / 10000,
.....: index=pd.date_range('2001-01-01', periods=2000),
.....: columns=['A', 'B'])
.....:
In [164]: df
Out[164]:
A B
2001-01-01 -0.000144 -0.000141
2001-01-02 0.000161 0.000102
2001-01-03 0.000057 0.000088
2001-01-04 -0.000221 0.000097
2001-01-05 -0.000201 -0.000041
... ... ...
2006-06-19 0.000040 -0.000235
2006-06-20 -0.000123 -0.000021
2006-06-21 -0.000113 0.000114
2006-06-22 0.000136 0.000109
2006-06-23 0.000027 0.000030
[2000 rows x 2 columns]
In [165]: def gm(df, const):
.....: v = ((((df['A'] + df['B']) + 1).cumprod()) - 1) * const
.....: return v.iloc[-1]
.....:
In [166]: s = pd.Series({df.index[i]: gm(df.iloc[i:min(i + 51, len(df) - 1)], 5)
.....: for i in range(len(df) - 50)})
.....:
In [167]: s
Out[167]:
2001-01-01 0.000930
2001-01-02 0.002615
2001-01-03 0.001281
2001-01-04 0.001117
2001-01-05 0.002772
...
2006-04-30 0.003296
2006-05-01 0.002629
2006-05-02 0.002081
2006-05-03 0.004247
2006-05-04 0.003928
Length: 1950, dtype: float64
Rolling apply with a DataFrame returning a Scalar
Rolling Apply to multiple columns where function returns a Scalar (Volume Weighted Average Price)
In [168]: rng = pd.date_range(start='2014-01-01', periods=100)
In [169]: df = pd.DataFrame({'Open': np.random.randn(len(rng)),
.....: 'Close': np.random.randn(len(rng)),
.....: 'Volume': np.random.randint(100, 2000, len(rng))},
.....: index=rng)
.....:
In [170]: df
Out[170]:
Open Close Volume
2014-01-01 -1.611353 -0.492885 1219
2014-01-02 -3.000951 0.445794 1054
2014-01-03 -0.138359 -0.076081 1381
2014-01-04 0.301568 1.198259 1253
2014-01-05 0.276381 -0.669831 1728
... ... ... ...
2014-04-06 -0.040338 0.937843 1188
2014-04-07 0.359661 -0.285908 1864
2014-04-08 0.060978 1.714814 941
2014-04-09 1.759055 -0.455942 1065
2014-04-10 0.138185 -1.147008 1453
[100 rows x 3 columns]
In [171]: def vwap(bars):
.....: return ((bars.Close * bars.Volume).sum() / bars.Volume.sum())
.....:
In [172]: window = 5
In [173]: s = pd.concat([(pd.Series(vwap(df.iloc[i:i + window]),
.....: index=[df.index[i + window]]))
.....: for i in range(len(df) - window)])
.....:
In [174]: s.round(2)
Out[174]:
2014-01-06 0.02
2014-01-07 0.11
2014-01-08 0.10
2014-01-09 0.07
2014-01-10 -0.29
...
2014-04-06 -0.63
2014-04-07 -0.02
2014-04-08 -0.03
2014-04-09 0.34
2014-04-10 0.29
Length: 95, dtype: float64
Timeseries
Constructing a datetime range that excludes weekends and includes only certain times
Aggregation and plotting time series
Turn a matrix with hours in columns and days in rows into a continuous row sequence in the form of a time series. How to rearrange a Python pandas DataFrame?
Dealing with duplicates when reindexing a timeseries to a specified frequency
Calculate the first day of the month for each entry in a DatetimeIndex
In [175]: dates = pd.date_range('2000-01-01', periods=5)
In [176]: dates.to_period(freq='M').to_timestamp()
Out[176]:
DatetimeIndex(['2000-01-01', '2000-01-01', '2000-01-01', '2000-01-01',
'2000-01-01'],
dtype='datetime64[ns]', freq=None)
Resampling
The Resample docs.
Using Grouper instead of TimeGrouper for time grouping of values
Time grouping with some missing values
Valid frequency arguments to Grouper Timeseries
Using TimeGrouper and another grouping to create subgroups, then apply a custom function
Resampling with custom periods
Resample intraday frame without adding new days
Merge
The Concat docs. The Join docs.
Append two dataframes with overlapping index (emulate R rbind)
In [177]: rng = pd.date_range('2000-01-01', periods=6)
In [178]: df1 = pd.DataFrame(np.random.randn(6, 3), index=rng, columns=['A', 'B', 'C'])
In [179]: df2 = df1.copy()
Depending on df construction, `ignore_index` may be needed
In [180]: df = df1.append(df2, ignore_index=True)
In [181]: df
Out[181]:
A B C
0 -0.870117 -0.479265 -0.790855
1 0.144817 1.726395 -0.464535
2 -0.821906 1.597605 0.187307
3 -0.128342 -1.511638 -0.289858
4 0.399194 -1.430030 -0.639760
5 1.115116 -2.012600 1.810662
6 -0.870117 -0.479265 -0.790855
7 0.144817 1.726395 -0.464535
8 -0.821906 1.597605 0.187307
9 -0.128342 -1.511638 -0.289858
10 0.399194 -1.430030 -0.639760
11 1.115116 -2.012600 1.810662
In [182]: df = pd.DataFrame(data={'Area': ['A'] * 5 + ['C'] * 2,
.....: 'Bins': [110] * 2 + [160] * 3 + [40] * 2,
.....: 'Test_0': [0, 1, 0, 1, 2, 0, 1],
.....: 'Data': np.random.randn(7)})
.....:
In [183]: df
Out[183]:
Area Bins Test_0 Data
0 A 110 0 -0.433937
1 A 110 1 -0.160552
2 A 160 0 0.744434
3 A 160 1 1.754213
4 A 160 2 0.000850
5 C 40 0 0.342243
6 C 40 1 1.070599
In [184]: df['Test_1'] = df['Test_0'] - 1
In [185]: pd.merge(df, df, left_on=['Bins', 'Area', 'Test_0'],
.....: right_on=['Bins', 'Area', 'Test_1'],
.....: suffixes=('_L', '_R'))
.....:
Out[185]:
Area Bins Test_0_L Data_L Test_1_L Test_0_R Data_R Test_1_R
0 A 110 0 -0.433937 -1 1 -0.160552 0
1 A 160 0 0.744434 -1 1 1.754213 0
2 A 160 1 1.754213 0 2 0.000850 1
3 C 40 0 0.342243 -1 1 1.070599 0
Join with a criteria based on the values
Using searchsorted to merge based on values inside a range
Plotting
The Plotting docs.
Setting x-axis major and minor labels
Plotting multiple charts in an ipython notebook
Annotate a time-series plot #2
Generate Embedded plots in excel files using Pandas, Vincent and xlsxwriter
Boxplot for each quartile of a stratifying variable
In [186]: df = pd.DataFrame(
.....: {'stratifying_var': np.random.uniform(0, 100, 20),
.....: 'price': np.random.normal(100, 5, 20)})
.....:
In [187]: df['quartiles'] = pd.qcut(
.....: df['stratifying_var'],
.....: 4,
.....: labels=['0-25%', '25-50%', '50-75%', '75-100%'])
.....:
In [188]: df.boxplot(column='price', by='quartiles')
Out[188]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9f2b8e9700>
![../_images/quartile_boxplot.png](https://pandas.pydata.org/pandas-docs/stable/_images/quartile_boxplot.png)
Data in/out
Performance comparison of SQL vs HDF5
CSV
The CSV docs
Reading only certain rows of a csv chunk-by-chunk
Reading the first few lines of a frame
Reading a file that is compressed but not by gzip/bz2
(the native compressed formats which read_csv
understands). This example shows a WinZipped
file, but is a general application of opening the file within a context manager and using that handle to read. See here
Reading CSV with Unix timestamps and converting to local timezone
Write a multi-row index CSV without writing duplicates
Reading multiple files to create a single DataFrame
The best way to combine multiple files into a single DataFrame is to read the individual frames one by one, put all of the individual frames into a list, and then combine the frames in the list using pd.concat()
:
In [189]: for i in range(3):
.....: data = pd.DataFrame(np.random.randn(10, 4))
.....: data.to_csv('file_{}.csv'.format(i))
.....:
In [190]: files = ['file_0.csv', 'file_1.csv', 'file_2.csv']
In [191]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)
You can use the same approach to read all files matching a pattern. Here is an example using glob
:
In [192]: import glob
In [193]: import os
In [194]: files = glob.glob('file_*.csv')
In [195]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)
Finally, this strategy will work with the other pd.read_*(...)
functions described in the io docs.
Parsing date components in multi-columns
Parsing date components in multi-columns is faster with a format
In [196]: i = pd.date_range('20000101', periods=10000)
In [197]: df = pd.DataFrame({'year': i.year, 'month': i.month, 'day': i.day})
In [198]: df.head()
Out[198]:
year month day
0 2000 1 1
1 2000 1 2
2 2000 1 3
3 2000 1 4
4 2000 1 5
In [199]: %timeit pd.to_datetime(df.year * 10000 + df.month * 100 + df.day, format='%Y%m%d')
.....: ds = df.apply(lambda x: "%04d%02d%02d" % (x['year'],
.....: x['month'], x['day']), axis=1)
.....: ds.head()
.....: %timeit pd.to_datetime(ds)
.....:
12.7 ms +- 111 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
3.44 ms +- 99.2 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
Skip row between header and data
In [200]: data = """;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: date;Param1;Param2;Param4;Param5
.....: ;m²;°C;m²;m
.....: ;;;;
.....: 01.01.1990 00:00;1;1;2;3
.....: 01.01.1990 01:00;5;3;4;5
.....: 01.01.1990 02:00;9;5;6;7
.....: 01.01.1990 03:00;13;7;8;9
.....: 01.01.1990 04:00;17;9;10;11
.....: 01.01.1990 05:00;21;11;12;13
.....: """
.....:
Option 1: pass rows explicitly to skip rows
In [201]: from io import StringIO
In [202]: pd.read_csv(StringIO(data), sep=';', skiprows=[11, 12],
.....: index_col=0, parse_dates=True, header=10)
.....:
Out[202]:
Param1 Param2 Param4 Param5
date
1990-01-01 00:00:00 1 1 2 3
1990-01-01 01:00:00 5 3 4 5
1990-01-01 02:00:00 9 5 6 7
1990-01-01 03:00:00 13 7 8 9
1990-01-01 04:00:00 17 9 10 11
1990-01-01 05:00:00 21 11 12 13
Option 2: read column names and then data
In [203]: pd.read_csv(StringIO(data), sep=';', header=10, nrows=10).columns
Out[203]: Index(['date', 'Param1', 'Param2', 'Param4', 'Param5'], dtype='object')
In [204]: columns = pd.read_csv(StringIO(data), sep=';', header=10, nrows=10).columns
In [205]: pd.read_csv(StringIO(data), sep=';', index_col=0,
.....: header=12, parse_dates=True, names=columns)
.....:
Out[205]:
Param1 Param2 Param4 Param5
date
1990-01-01 00:00:00 1 1 2 3
1990-01-01 01:00:00 5 3 4 5
1990-01-01 02:00:00 9 5 6 7
1990-01-01 03:00:00 13 7 8 9
1990-01-01 04:00:00 17 9 10 11
1990-01-01 05:00:00 21 11 12 13
SQL
The SQL docs
Reading from databases with SQL
Excel
The Excel docs
Reading from a filelike handle
Modifying formatting in XlsxWriter output
HTML
Reading HTML tables from a server that cannot handle the default request header
HDFStore
The HDFStores docs
Simple queries with a Timestamp Index
Managing heterogeneous data using a linked multiple table hierarchy
Merging on-disk tables with millions of rows
Avoiding inconsistencies when writing to a store from multiple processes/threads
De-duplicating a large store by chunks, essentially a recursive reduction operation. Shows a function for taking in data from csv file and creating a store by chunks, with date parsing as well. See here
Creating a store chunk-by-chunk from a csv file
Appending to a store, while creating a unique index
Reading in a sequence of files, then providing a global unique index to a store while appending
Groupby on a HDFStore with low group density
Groupby on a HDFStore with high group density
Hierarchical queries on a HDFStore
Troubleshoot HDFStore exceptions
Setting min_itemsize with strings
Using ptrepack to create a completely-sorted-index on a store
Storing Attributes to a group node
In [206]: df = pd.DataFrame(np.random.randn(8, 3))
In [207]: store = pd.HDFStore('test.h5')
In [208]: store.put('df', df)
# you can store an arbitrary Python object via pickle
In [209]: store.get_storer('df').attrs.my_attribute = {'A': 10}
In [210]: store.get_storer('df').attrs.my_attribute
Out[210]: {'A': 10}
You can create or load a HDFStore in-memory by passing the driver
parameter to PyTables. Changes are only written to disk when the HDFStore is closed.
In [211]: store = pd.HDFStore('test.h5', 'w', diver='H5FD_CORE')
In [212]: df = pd.DataFrame(np.random.randn(8, 3))
In [213]: store['test'] = df
# only after closing the store, data is written to disk:
In [214]: store.close()
Binary files
pandas readily accepts NumPy record arrays, if you need to read in a binary file consisting of an array of C structs. For example, given this C program in a file called main.c
compiled with gcc main.c -std=gnu99
on a 64-bit machine,
#include <stdio.h>
#include <stdint.h>
typedef struct _Data
{
int32_t count;
double avg;
float scale;
} Data;
int main(int argc, const char *argv[])
{
size_t n = 10;
Data d[n];
for (int i = 0; i < n; ++i)
{
d[i].count = i;
d[i].avg = i + 1.0;
d[i].scale = (float) i + 2.0f;
}
FILE *file = fopen("binary.dat", "wb");
fwrite(&d, sizeof(Data), n, file);
fclose(file);
return 0;
}
the following Python code will read the binary file 'binary.dat'
into a pandas DataFrame
, where each element of the struct corresponds to a column in the frame:
names = 'count', 'avg', 'scale'
# note that the offsets are larger than the size of the type because of
# struct padding
offsets = 0, 8, 16
formats = 'i4', 'f8', 'f4'
dt = np.dtype({'names': names, 'offsets': offsets, 'formats': formats},
align=True)
df = pd.DataFrame(np.fromfile('binary.dat', dt))
Note
The offsets of the structure elements may be different depending on the architecture of the machine on which the file was created. Using a raw binary file format like this for general data storage is not recommended, as it is not cross platform. We recommended either HDF5 or parquet, both of which are supported by pandas’ IO facilities.
Computation
Numerical integration (sample-based) of a time series
Correlation
Often it’s useful to obtain the lower (or upper) triangular form of a correlation matrix calculated from DataFrame.corr()
. This can be achieved by passing a boolean mask to where
as follows:
In [215]: df = pd.DataFrame(np.random.random(size=(100, 5)))
In [216]: corr_mat = df.corr()
In [217]: mask = np.tril(np.ones_like(corr_mat, dtype=np.bool), k=-1)
In [218]: corr_mat.where(mask)
Out[218]:
0 1 2 3 4
0 NaN NaN NaN NaN NaN
1 -0.079861 NaN NaN NaN NaN
2 -0.236573 0.183801 NaN NaN NaN
3 -0.013795 -0.051975 0.037235 NaN NaN
4 -0.031974 0.118342 -0.073499 -0.02063 NaN
The method argument within DataFrame.corr can accept a callable in addition to the named correlation types. Here we compute the distance correlation matrix for a DataFrame object.
In [219]: def distcorr(x, y):
.....: n = len(x)
.....: a = np.zeros(shape=(n, n))
.....: b = np.zeros(shape=(n, n))
.....: for i in range(n):
.....: for j in range(i + 1, n):
.....: a[i, j] = abs(x[i] - x[j])
.....: b[i, j] = abs(y[i] - y[j])
.....: a += a.T
.....: b += b.T
.....: a_bar = np.vstack([np.nanmean(a, axis=0)] * n)
.....: b_bar = np.vstack([np.nanmean(b, axis=0)] * n)
.....: A = a - a_bar - a_bar.T + np.full(shape=(n, n), fill_value=a_bar.mean())
.....: B = b - b_bar - b_bar.T + np.full(shape=(n, n), fill_value=b_bar.mean())
.....: cov_ab = np.sqrt(np.nansum(A * B)) / n
.....: std_a = np.sqrt(np.sqrt(np.nansum(A**2)) / n)
.....: std_b = np.sqrt(np.sqrt(np.nansum(B**2)) / n)
.....: return cov_ab / std_a / std_b
.....:
In [220]: df = pd.DataFrame(np.random.normal(size=(100, 3)))
In [221]: df.corr(method=distcorr)
Out[221]:
0 1 2
0 1.000000 0.197613 0.216328
1 0.197613 1.000000 0.208749
2 0.216328 0.208749 1.000000
Timedeltas
The Timedeltas docs.
In [222]: import datetime
In [223]: s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D'))
In [224]: s - s.max()
Out[224]:
0 -2 days
1 -1 days
2 0 days
dtype: timedelta64[ns]
In [225]: s.max() - s
Out[225]:
0 2 days
1 1 days
2 0 days
dtype: timedelta64[ns]
In [226]: s - datetime.datetime(2011, 1, 1, 3, 5)
Out[226]:
0 364 days 20:55:00
1 365 days 20:55:00
2 366 days 20:55:00
dtype: timedelta64[ns]
In [227]: s + datetime.timedelta(minutes=5)
Out[227]:
0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]
In [228]: datetime.datetime(2011, 1, 1, 3, 5) - s
Out[228]:
0 -365 days +03:05:00
1 -366 days +03:05:00
2 -367 days +03:05:00
dtype: timedelta64[ns]
In [229]: datetime.timedelta(minutes=5) + s
Out[229]:
0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]
Adding and subtracting deltas and dates
In [230]: deltas = pd.Series([datetime.timedelta(days=i) for i in range(3)])
In [231]: df = pd.DataFrame({'A': s, 'B': deltas})
In [232]: df
Out[232]:
A B
0 2012-01-01 0 days
1 2012-01-02 1 days
2 2012-01-03 2 days
In [233]: df['New Dates'] = df['A'] + df['B']
In [234]: df['Delta'] = df['A'] - df['New Dates']
In [235]: df
Out[235]:
A B New Dates Delta
0 2012-01-01 0 days 2012-01-01 0 days
1 2012-01-02 1 days 2012-01-03 -1 days
2 2012-01-03 2 days 2012-01-05 -2 days
In [236]: df.dtypes
Out[236]:
A datetime64[ns]
B timedelta64[ns]
New Dates datetime64[ns]
Delta timedelta64[ns]
dtype: object
Values can be set to NaT using np.nan, similar to datetime
In [237]: y = s - s.shift()
In [238]: y
Out[238]:
0 NaT
1 1 days
2 1 days
dtype: timedelta64[ns]
In [239]: y[1] = np.nan
In [240]: y
Out[240]:
0 NaT
1 NaT
2 1 days
dtype: timedelta64[ns]
Creating example data
To create a dataframe from every combination of some given values, like R’s expand.grid()
function, we can create a dict where the keys are column names and the values are lists of the data values:
In [241]: def expand_grid(data_dict):
.....: rows = itertools.product(*data_dict.values())
.....: return pd.DataFrame.from_records(rows, columns=data_dict.keys())
.....:
In [242]: df = expand_grid({'height': [60, 70],
.....: 'weight': [100, 140, 180],
.....: 'sex': ['Male', 'Female']})
.....:
In [243]: df
Out[243]:
height weight sex
0 60 100 Male
1 60 100 Female
2 60 140 Male
3 60 140 Female
4 60 180 Male
5 60 180 Female
6 70 100 Male
7 70 100 Female
8 70 140 Male
9 70 140 Female
10 70 180 Male
11 70 180 Female